giovedì 23 luglio 2015

CHIMICA SECONDA PARTE


CHIMICA 
SECONDA PARTE


Soluzione 
In chimica, miscela omogenea di due o più sostanze; la sostanza presente in quantità maggiore, che può essere solida, liquida o gassosa, è detta solvente, mentre quella presente in quantità minore, in genere solida o liquida, è detta soluto. Raramente miscele di gas, come l'atmosfera, sono dette soluzioni. Le soluzioni appaiono omogenee e il soluto non può essere separato tramite filtrazione, a differenza di quanto avviene nei colloidi o nelle sospensioni, in cui le particelle di soluto sono di dimensioni molecolari e finemente disperse tra le molecole del solvente. Si dice soluzione solida una miscela di metalli che ha subito un processo di solidificazione mantenendo le proporzioni fra i costituenti.
Solubilità
Alcuni liquidi, ad esempio acqua e alcol, si sciolgono fra loro in qualsiasi proporzione; al contrario se si scioglie zucchero in acqua, non si potrà superare un limite fissato, che dipende dalle condizioni di pressione e temperatura, e la soluzione può quindi divenire satura. La solubilità di un composto in un solvente è definita, per valori fissati di pressione e temperatura, come la quantità massima di quel composto che può sciogliersi in soluzione e, tranne poche eccezioni come gas o sali organici di calcio, cresce all'aumentare della temperatura del solvente. In generale, le soluzioni di molecole strutturalmente simili a quelle del solvente hanno solubilità elevate.
Proprietà fisiche delle soluzioni 
Quando si aggiunge del soluto a un solvente, molte delle proprietà di quest'ultimo variano; in particolare all'aumentare della concentrazione di soluto, si alza il punto di ebollizione e si abbassa il punto di solidificazione (o congelamento). Per questo motivo, si può inibire il congelamento dell'acqua contenuta nel radiatore di un'automobile aggiungendovi una sostanza antigelo, ad esempio 1,2-etandiolo (HOCH2CH2OH), sotto forma di soluto. Inoltre, la pressione di vapore del solvente si abbassa all'aumentare della concentrazione di soluto.
Un'altra importante proprietà delle soluzioni è la capacità di esercitare pressione osmotica. Se due solventi vengono separati da una membrana semipermeabile (una membrana che permette il passaggio delle molecole di solvente ma non di quelle di soluto), le molecole del solvente si sposteranno dalla soluzione a concentrazione più bassa a quella a concentrazione più alta, con l'effetto di diluire quest'ultima.
Liquidi 

Sostanze che si trovano nello stato liquido della materia
 I legami tra le molecole di un liquido hanno intensità intermedia tra quelli che caratterizzano lo stato solido e lo stato gassoso. L’analisi dei liquidi mediante raggi X ha mostrato l’esistenza di un certo grado di regolarità nella disposizione delle molecole entro alcuni diametri molecolari. In alcune sostanze, inoltre, le particelle hanno un orientamento preferenziale, che determina un’anisotropia rispetto ad alcune proprietà (che variano a seconda della direzione). In opportune condizioni di temperatura e di pressione, quasi tutte le sostanze possono esistere allo stato liquido, anche se alcuni solidi sublimano, cioè passano direttamente dallo stato solido a quello gassoso. La densità di un liquido è solitamente minore del valore che caratterizza la medesima sostanza allo stato solido; fanno eccezione alcune sostanze, come ad esempio l’acqua.
I liquidi sono caratterizzati da un attrito interno, che si oppone allo scorrimento tra stati adiacenti, detto viscosità. Questa grandezza normalmente diminuisce all’aumentare della temperatura e aumenta al crescere della pressione; inoltre è in relazione con la complessità delle molecole che costituiscono il fluido: in particolare è bassa nei gas inerti liquefatti e alta negli oli pesanti. La pressione del vapore in equilibrio con il liquido, chiamata tensione di vapor saturo, dipende solo dalla temperatura ed è una proprietà caratteristica di ogni liquido. Anche il punto di ebollizione, di solidificazione e il calore di evaporazione (cioè la quantità di calore richiesta per far evaporare una massa unitaria) variano da sostanza a sostanza. In alcuni casi i liquidi possono essere riscaldati a temperature maggiori del punto di ebollizione (fluido surriscaldato) o raffreddati oltre il punto di solidificazione.
Evaporazione 
Processo che si verifica quando una sostanza passa gradualmente dallo stato liquido allo stato gassoso, senza ebollizione. Le molecole di un liquido si muovono in modo disordinato e casuale (moto di agitazione termica) con una velocità media che dipende dalla temperatura. Per valori della temperatura minori del punto di ebollizione, le molecole che si trovano presso la superficie libera con velocità superiore alla media possono avere energia sufficiente per vincere le forze attrattive esercitate dalle particelle interne del liquido e passare nell’aria sovrastante sotto forma di gas. Naturalmente, soltanto le molecole più veloci possono sfuggire, pertanto la velocità media del moto di agitazione termica diminuisce e con essa l’energia media delle molecole e quindi la temperatura del liquido. Come conseguenza di ciò l’evaporazione produce raffreddamento.
Se un liquido evapora in un recipiente chiuso, lo spazio sopra la superficie libera si riempie rapidamente di vapore, e l’evaporazione è presto bilanciata dal fenomeno opposto: la condensazione. Per completare il processo, quindi, è necessario rimuovere il vapore man mano che si forma. Per questa ragione un liquido evapora più velocemente quando la sua superficie è ventilata o quando il vapore viene asportato mediante una pompa.
Punto di ebollizione 
Temperatura alla quale la pressione di vapore di un liquido eguaglia la pressione atmosferica al di sopra del liquido stesso. Per temperature inferiori al punto di ebollizione (p.e.), si ha evaporazione solo dalla superficie del liquido; durante l'ebollizione, il vapore si forma anche all'interno del liquido, e man mano che le bolle di vapore salgono verso la superficie causano la turbolenza e il gorgoglìo associati all'ebollizione. L'evaporazione continua, finché si fornisce calore al liquido, senza aumento di temperatura: l'ebollizione infatti avviene a temperatura costante qualunque sia la quantità di calore fornita.
Il punto di ebollizione aumenta al crescere della pressione del liquido; alla pressione di una atmosfera (101.325 pascal), l'acqua bolle a 100 °C, mentre a 217 atmosfere, il processo avviene alla temperatura di 374 °C. Al di sopra di questo valore, detto temperatura critica, l'acqua diventa vapore saturo.
Al contrario, ad altitudini elevate, quando diminuisce la pressione dell'aria, l'acqua bolle a temperature inferiori a 100 °C; ad esempio, a una quota di 1800 m sopra il livello del mare, il p.e. è di circa 94 °C. Per valori della pressione inferiori a 600 pascal, il punto di ebollizione è circa 0 °C.
I punti di ebollizione delle diverse sostanze variano moltissimo: il valore più basso è quello dell'elio, -268,9 °C, mentre il più alto conosciuto è quello del tungsteno, circa 5900 °C. I punti di ebollizione indicati nei vari articoli sono misurati a pressione atmosferica.
Condensazione 
Transizione di una sostanza dallo stato di vapore allo stato liquido. La condensazione si realizza per compressione o per raffreddamento ed è favorita se le pareti del recipiente vengono portate a una temperatura inferiore rispetto al vapore in esso contenuto; in questo caso infatti la sostanza cede con facilità il calore latente di evaporazione precedentemente assorbito. Il processo comporta la riduzione del volume occupato dal vapore, della velocità delle molecole che lo costituiscono e della loro mutua distanza.
La distillazione, la formazione di nuvole, la precipitazione di pioggia, la formazione di rugiada e di neve, sono fenomeni di condensazione.
In chimica, si dice reazione di condensazione il processo secondo cui gli atomi di una o più molecole semplici si combinano per formare un nuovo composto più complesso, di peso molecolare maggiore di ciascuno dei reagenti.

Solidi
Ramo della fisica che ha per oggetto lo studio delle proprietà delle sostanze liquide e solide, inclusi i cristalli e i materiali amorfi, quali ad esempio vetri e ceramiche; si occupa anche delle caratteristiche di alcuni composti chimici, di particolari sostanze organiche e di vari polimeri. Nata come disciplina nel XX secolo, la fisica dello stato solido si avvalse degli esperimenti di diffrazione di raggi X per studiare la struttura dei cristalli, giungendo a risultati fondamentali e rivoluzionari, quali la scoperta dei semiconduttori e lo sviluppo della teoria microscopica della superconduttività. Queste ricerche produssero importanti dispositivi come transistor, fibre ottiche e laser a semiconduttore. La fisica dello stato solido è attualmente in rapido sviluppo e una caratteristica della tecnologia del XXI secolo sarà probabilmente l’introduzione di nuovi materiali con proprietà inusitate, scoperte mediante le ricerche nell’ambito di questo campo di studi.
Una delle più importanti conquiste di questa disciplina è la teoria delle “bande” di energia dei solidi. Un elettrone legato al nucleo di un atomo isolato può occupare solo un insieme discreto di livelli di energia; invece, in un solido cristallino, costituito da moltissimi atomi identici disposti in una struttura reticolare estremamente regolare, i livelli energetici sono organizzati in bande “permesse” di energia separate da bande “priobite”. Poiché la struttura delle bande è una proprietà del cristallo nel suo insieme, ogni atomo può contribuire con un elettrone esterno (o di valenza) a riempire le bande permesse. In accordo col principio di esclusione enunciato da Wolfgang Pauli, gli elettroni occupano ciascuno dei livelli di energia a coppie, in relazione ai due possibili valori dello spin (spin in su, o positivo, e spin in giù, o negativo). In prossimità dello zero assoluto, tutti i livelli di energia più bassi del cristallo sono completamente occupati, mentre per valori maggiori della temperatura gli elettroni acquistano energia e possono riempire i livelli più alti. Il cosiddetto “livello di Fermi” rappresenta la linea di demarcazione al di sopra e al di sotto della quale i livelli sono con buona approssimazione rispettivamente vuoti e pieni; questo livello permette di definire le proprietà conduttrici o isolanti dei vari materiali.
Se il livello di Fermi si trova in mezzo a una banda permessa, il solido è un conduttore; in questo caso, infatti, anche piccole energie possono determinare transizioni elettroniche tra i livelli energetici e questa mobilità di particelle cariche è responsabile delle proprietà che caratterizzano i materiali conduttori: la capacità di condurre elettricità e calore e di assorbire la radiazione luminosa. Esempi tipici di sostanze conduttrici si trovano, in generale, tra i metalli. Se il livello di Fermi si trova in cima a una banda permessa e vi è un salto di energia (gap) relativamente grande tra questa e la successiva banda permessa, il solido è un isolante, come il diamante o il quarzo. In questo caso, solo grandi energie possono eccitare gli elettroni, provocando il salto della banda proibita; di conseguenza i materiali isolanti sono cattivi conduttori di calore e di elettricità, non assorbono la luce e sono spesso trasparenti. Infine, se il livello di Fermi è vicino alla sommità di una banda permessa ma questa confina con una banda proibita piuttosto stretta, il solido è un semiconduttore, come il silicio.
Un campo attivo di ricerca della fisica dello stato solido è lo studio dei superconduttori, cioè di quei materiali che, a temperature estremamente basse, alcuni gradi sopra lo zero assoluto, manifestano improvvise variazioni delle proprietà elettriche e magnetiche, associate alla scomparsa della resistenza elettrica. In assenza di resistenza, una corrente lanciata in un anello superconduttore circola indefinitamente, senza richiedere alimentazione e senza dissipazione di energia. In pratica sono stati realizzati anelli superconduttori capaci di sostenere correnti elettriche per mesi, senza un’apprezzabile diminuzione di intensità.
Per la maggior parte del XX secolo i fenomeni di superconduzione furono osservati solo alla temperatura dell’elio liquido (-268,9 °C). Il raggiungimento e il mantenimento di simili temperature ha costi rilevanti, tali da rendere svantaggioso dal punto di vista economico l’impiego di materiali superconduttori; tuttavia, negli anni Ottanta la scoperta di una classe di materiali ceramici che manifestano transizioni allo stato superconduttivo a temperature notevolmente maggiori di quella di liquefazione dell’aria (circa -200 °C) ha aperto nuove possibilità di applicazione della superconduttività, forse per dispositivi elettronici ad alta velocità o per più efficienti linee di trasporto dell’energia elettrica.
Punto di solidificazione 
Temperatura alla quale una sostanza passa dallo stato liquido a quello solido, a una determinata pressione. Il punto di solidificazione di un liquido puro (non mescolato) coincide con il punto di fusione della stessa sostanza allo stato solido e può essere interpretato come la temperatura alla quale gli stati liquido e solido sono in equilibrio. Se si fornisce calore a una miscela solido-liquido di una stessa sostanza che si trova al punto di solidificazione, la temperatura rimane costante finché la miscela non è completamente liquefatta, e tutto il calore viene assorbito come calore latente di fusione. Allo stesso modo, se si sottrae calore a una miscela solido-liquido al suo punto di congelamento, la sostanza si manterrà alla stessa temperatura finché non sarà completo il processo di solidificazione; in questo caso il trasferimento di calore avviene in corrispondenza alla transizione tra lo stato liquido e quello solido.
Tutti i solidi fondono se vengono scaldati fino al punto di fusione, al contrario può accadere che sostanze liquide rimangano tali anche se raffreddate oltre il punto di solidificazione; in altre parole un liquido può essere "sovraraffreddato" per un determinato intervallo di tempo. La spiegazione di questo fenomeno risiede nella teoria molecolare, secondo cui le molecole di un solido si trovano in una situazione di ordine, vincolate a occupare posizioni fisse, mentre uno stato disordinato in cui esse sono libere di muoversi è caratteristico dello stato liquido. Perché un liquido solidifichi è necessaria la presenza di un nucleo, ossia un punto di ordine molecolare, attorno al quale le molecole possano cristallizzare, assumendo posizioni determinate all'interno del reticolo cristallino in formazione.
Il punto di solidificazione di una soluzione, sempre più basso di quello del solvente puro, dipende dalla concentrazione molecolare del soluto ma anche dal fatto che questo sia o meno un elettrolita: infatti le soluzioni non elettrolitiche hanno punti di solidificazione più alti di quelle degli elettroliti, a parità di concentrazione.
Analogamente, nelle miscele e nelle leghe il processo di solidificazione può avvenire a temperatura inferiore rispetto a quanto sarebbe per i singoli componenti.
Il punto di solidificazione per la maggior parte dei liquidi aumenta all'aumentare della pressione. Un'eccezione a questo comportamento si ha per le sostanze che si espandono in seguito a un processo di congelamento, come ad esempio l'acqua. Ponendo un peso su un blocco di ghiaccio, la parte appena sotto al peso comincerà a liquefarsi ma ritornerà solida, senza variazioni di temperatura, non appena la pressione verrà rimossa. 
Cristallo.
Solido caratterizzato da una disposizione periodica e ordinata di atomi ai vertici di una struttura reticolare che prende il nome di reticolo cristallino. La presenza di una tale organizzazione atomica conferisce al cristallo una forma geometrica definita, dotata di particolari relazioni di simmetria e delimitata da superfici piane e lisce. I cristalli si formano per solidificazione graduale di un liquido o per sublimazione di un gas. Gli angoli tra facce corrispondenti di due cristalli della stessa sostanza, indipendentemente dalla dimensione e dalle differenze superficiali di forma, sono sempre identici.
La materia allo stato solido presenta nella maggior parte dei casi una struttura cristallina; fanno eccezione materiali detti amorfi, come ad esempio il vetro, che dal punto di vista strutturale sono più simili ai liquidi che non ai solidi.
Le condizioni per la formazione 
La formazione e le caratteristiche di una struttura cristallina dipendono dalla rapidità e dalle condizioni del processo di solidificazione. Gli stessi liquidi che quando solidificano gradualmente in profondità nella crosta terrestre formano il granito, qualche volta vengono eruttati in superficie come lava vulcanica e si raffreddano rapidamente, formando una roccia vetrosa chiamata ossidiana. Se il raffreddamento è un poco più lento si forma una roccia criptocristallina o afanitica, con cristalli troppo piccoli per potere essere distinti a occhio nudo. Quando il raffreddamento avviene con lentezza ancora maggiore, si forma una roccia di struttura porfirica, nella quale solo alcuni cristalli sono grandi abbastanza da essere visibili. Se la composizione è la stessa del granito, questa forma porfirica prende il nome di riolite.
Ogni minerale che costituisce una roccia è presente in forma di cristalli piccoli ma omogenei. Le sostanze che solidificano per prime durante il raffreddamento della roccia fusa presentano uno sviluppo normale delle proprie forme cristalline; diversamente quelle che cristallizzano per ultime, costrette a occupare gli interstizi rimanenti, presentano un aspetto esterno deformato. Durante il processo di cristallizzazione, si formano cristalli omogenei che si separano dalle miscele liquide. Questa caratteristica viene sfruttata anche per purificare sostanze cristalline: ad esempio le sostanze chimiche organiche vengono quasi invariabilmente purificate per ricristallizzazione.
In alcuni gruppi minerali gli ioni di un elemento possono essere sostituiti da ioni di un altro elemento, lasciando invariata la struttura cristallina e formando una serie di soluzioni solide. Quando vi è una completa e continua gradazione di composizione chimica da un membro estremo all'altro, la serie viene detta isomorfa. Un esempio è fornito dalla varietà di feldspato detta plagioclasio, che forma una serie completa di composizione, compresa tra quella del puro alluminosilicato di sodio (albite) e quella del puro alluminosilicato di calcio (anortite). Altri gruppi di minerali che formano serie isomorfe sono quelli dell'apatite, della barite, della calcite e dello spinello.
Può capitare che il processo di cristallizzazione non avvenga e la soluzione di partenza divenga soprassatura (in modo analogo una sostanza può esistere allo stato liquido a temperature inferiori del suo punto di solidificazione). La tendenza a cristallizzare diminuisce all'aumentare della viscosità del fluido; in particolare se una soluzione diviene notevolmente soprassatura e superraffreddata, la viscosità può raggiungere un livello tale da rendere quasi impossibile la cristallizzazione; un'ulteriore evaporazione del solvente o un ulteriore raffreddamento producono dapprima una sorta di sciroppo e infine un vetro. Alcune sostanze mostrano una forte tendenza a formare nuclei di cristallizzazione, cosicché, se una soluzione contenente tali sostanze viene raffreddata lentamente, avviene la crescita di pochi grandi cristalli, al contrario se il raffreddamento è rapido si formano numerosi cristalli di dimensioni minuscole.
Cristallografia 
Lo studio dell'accrescimento, della forma e delle caratteristiche geometriche dei cristalli è detto cristallografia.
Quando le condizioni lo permettono, ogni elemento o composto chimico cristallizza in una forma definita e caratteristica che corrisponde a una determinata disposizione degli atomi nel reticolo. Così ad esempio il sale da cucina (vedi Cloruro di sodio) forma cristalli cubici (ovvero gli atomi sono ordinatamente disposti ai vertici di un cubo) mentre il granato più comunemente si presenta in dodecaedri (solidi con 12 facce) o trisottaedri (con 24 facce).
Teoricamente sono possibili 32 classi di cristalli raggruppate in sei sistemi cristallini, definiti in base alla lunghezza e all'orientamento degli assi di simmetria, linee ideali che definiscono le proprietà di simmetria del cristallo. Quasi tutti i minerali comuni sono compresi in una dozzina di classi appartenenti a sistemi diversi. Le proprietà chimiche e fisiche dipendono dalla particolare disposizione atomica, cosicché cristalli appartenenti a un determinato sistema cristallino hanno caratteristiche comuni.






Cubico 
Questo sistema comprende cristalli con tre assi mutuamente perpendicolari e di uguale lunghezza.
Tetragonale 
Questo sistema comprende cristalli con tre assi mutuamente perpendicolari, due dei quali con uguale lunghezza.
Ortorombico
Questo sistema comprende cristalli con tre assi mutuamente perpendicolari, ognuno di lunghezza diversa.
Monoclino 
Questo sistema comprende cristalli con tre assi di lunghezza diseguale, due dei quali (non perpendicolari) giacciono su un piano ortogonale al terzo.
Triclino 
Questo sistema comprende cristalli con tre assi diseguali e non mutuamente perpendicolari.
Esagonale 
Questo sistema comprende cristalli con quattro assi, tre dei quali giacciono su uno stesso piano, simmetricamente spaziati e di uguale lunghezza; il quarto asse è perpendicolare agli altri tre. Alcuni cristallografi dividono il sistema esagonale in due, denominando il settimo sistema trigonale o romboedrico.
Pochi elementi e composti possono cristallizzare in più sistemi cristallografici, dando luogo a sostanze che, seppure identiche in quanto a composizione chimica, posseggono proprietà fisiche diverse. Un esempio è fornito dal carbonio che cristallizza nel sistema trigonale come grafite e nel sistema cubico come diamante; questa forma, pur appartenendo allo stesso sistema del cloruro di sodio e del granato, è in una classe differente: cristallizza infatti in tetraedri (solidi a quattro facce) o ottaedri (solidi a otto facce).
Altre proprietà dei cristalli 
La forma di un minerale dipende dalle caratteristiche della sua struttura cristallina. Ad esempio l'argentite, un minerale dell'argento, cristallizza nella stessa classe del granato e del sale, ma si trova solitamente in irregolari masse criptocristalline. La fluorite, minerale relativamente comune, cristallizza nella stessa classe del granato formando cristalli cubici; tuttavia quando viene fratturata, essa tende a sfaldarsi in frammenti ottaedrici perfetti. Il sale forma frammenti cubici dalla sfaldatura perfetta, mentre il granato non presenta piani di sfaldatura ben definiti. Alcune sostanze inoltre tendono a formare cristalli multipli.
Alcuni cristalli manifestano proprietà elettriche come la piezoelettricità o la piroelettricità (ossia acquistano carica elettrica se vengono compressi o riscaldati), e per questo motivo sono sfruttati industrialmente. Un esempio è fornito dal quarzo che trova un vasto impiego in elettrotecnica ed elettronica. Nei transistor, le speciali proprietà dei cristalli di germanio e di silicio li rendono utilizzabili per amplificare correnti elettriche. Un altro dispositivo elettronico, la batteria solare, prevede l'uso di cristalli di silicio o di solfuro di cadmio per convertire la luce solare in energia elettrica.
In anni recenti sono stati messi a punto diversi metodi per preparare cristalli singoli di sostanze normalmente criptocristalline. Ad esempio è possibile ottenere grandi cristalli singoli di metalli mediante un semplice metodo che consiste nel fondere il metallo in un contenitore conico, che viene poi allontanato molto lentamente dal forno a cominciare dal vertice. In condizioni propizie, alla punta del cono si forma un singolo nucleo di cristallizzazione, che continua ad accrescersi fino a riempire l'intero contenitore. Tali cristalli singoli spesso sono notevolmente diversi dai metalli nella loro forma solita. Cristalli puri e particolari vengono attualmente prodotti con tecniche avanzate, come l'epitassia a fascio molecolare, per essere usati come semiconduttori e nei circuiti integrati.
Quando i raggi X incidono sulla superficie di un un cristallo, gli atomi disposti simmetricamente agiscono come reticolo di diffrazione e deflettono i raggi secondo schemi regolari dai quali è possibile risalire alla natura e alle caratteristiche strutturali del cristallo; la disposizione degli atomi può essere visualizzata direttamente per mezzo di dispositivi elettronici.
Una regola di base della cristallografia, considerata valida per lungo tempo, stabiliva che la simmetria pentagonale fosse incompatibile con la periodicità traslazionale propria dei cristalli. La scoperta, nel 1984, di una lega di alluminio e magnesio che sembra contravvenire a questa regola potrebbe indicare la possibilità dell'esistenza di una nuova fase di materia solida, diversa dai cristalli e dai vetri.